

Markscheme

November 2021

Mathematics: analysis and approaches

Higher level

Paper 1

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Instructions to Examiners

Abbreviations

- **M** Marks awarded for attempting to use a correct **Method**.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- **R** Marks awarded for clear **Reasoning**.
- **AG** Answer given in the question and so no marks are awarded.
- **FT** Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is generally not possible to award **MO** followed by **A1**, as **A** mark(s) depend on the preceding **M** mark(s), if any.
- Where M and A marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the correct values.
- Where there are two or more **A** marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award **A0A1A1**.
- Where the markscheme specifies *A3*, *M2 etc.*, do **not** split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the *AG* line, unless a **Note** makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even
 if this working is incorrect and/or suggests a misunderstanding of the question. This will
 encourage a uniform approach to marking, with less examiner discretion. Although some
 candidates may be advantaged for that specific question item, it is likely that these
 candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used
 in a subsequent part. For example, when a correct exact value is followed by an incorrect
 decimal approximation in the first part and this approximation is then used in the second
 part. In this situation, award FT marks as appropriate but do not award the final A1 in the
 first part.

Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	8√2	5.65685 (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	0.468111 (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award A0 for the final mark (and full FT is available in subsequent parts)

3 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (*FT*) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award *FT* marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then *FT* marks should be awarded for *their* correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is **(M1)A1**, it is possible to award full marks for *their* correct answer, **without working being seen**. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a **Note** in the Markscheme.

- Within a question part, once an **error** is made, no further **A** marks can be awarded for work which uses the error, but **M** marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1, $\sin \theta = 1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any *FT* marks in the subsequent parts. This

includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.

- Exceptions to these *FT* rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

5 Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (*MR*). A candidate should be penalized only once for a particular misread. Use the *MR* stamp to indicate that this has been a misread and do not award the first mark, even if this is an *M* mark, but award all others as appropriate.

- If the question becomes much simpler because of the **MR**, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*e.g.* probability greater than 1, $\sin \theta = 1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does **not** constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- **MR** can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should **not** infer that values were read incorrectly.

6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by **METHOD 1**, **METHOD 2**, *etc*.
- Alternative solutions for parts of questions are indicated by **EITHER** . . . **OR**.

7 Alternative forms

Unless the question specifies otherwise, **accept** equivalent forms.

- As this is an international examination, accept all alternative forms of **notation** for example 1.9 and 1,9 or 1000 and 1,000 and 1.000.
- Do not accept final answers written using calculator notation. However, **M** marks and intermediate **A** marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all
 equivalent notations/answers/methods will be presented in the markscheme and
 examiners are asked to apply appropriate discretion to judge if the candidate work is
 equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\bf A$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or

written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2, as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4e^{2x} \times e^{3x}$ should be simplified to $4e^{5x}$, and $4e^{2x} \times e^{3x} - e^{4x} \times e^{x}$ should be simplified to $3e^{5x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so x(x+1) and $x^2 + x$ are both acceptable.

Please note: intermediate **A** marks do NOT need to be simplified.

9 Calculators

No calculator is allowed. The use of any calculator on this paper is malpractice and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice.

10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

Section A

1. METHOD 1

recognition that
$$y = \int \cos\left(x - \frac{\pi}{4}\right) dx$$
 (M1)

$$y = \sin\left(x - \frac{\pi}{4}\right)(+c) \tag{A1}$$

substitute both x and y values into their integrated expression including c (M1)

$$2 = \sin\frac{\pi}{2} + c$$

c = 1

$$y = \sin\left(x - \frac{\pi}{4}\right) + 1$$

[4 marks]

METHOD 2

$$\int_{2}^{y} dy = \int_{\frac{3\pi}{4}}^{x} \cos\left(x - \frac{\pi}{4}\right) dx \tag{M1)(A1)}$$

$$y-2=\sin\left(x-\frac{\pi}{4}\right)-\sin\frac{\pi}{2}$$

$$y = \sin\left(x - \frac{\pi}{4}\right) + 1$$

[4 marks]

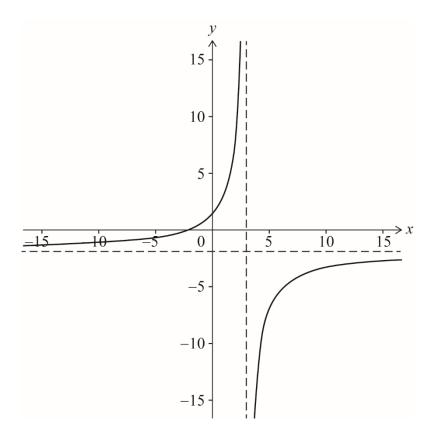
A1

A1

(ii) y = -2

[2 marks]

(b) (i) $\left(-2,0\right)$ (accept x=-2)


A1

(ii) $\left(0, \frac{4}{3}\right)$ (accept $y = \frac{4}{3}$ and $f(0) = \frac{4}{3}$)

A1

[2 marks]

(c)

A1

Note: Award *A1* for completely correct shape: two branches in correct quadrants with asymptotic behaviour.

[1 mark] continue...

(d) METHOD 1

$$(g(x)) = y = \frac{ax+4}{3-x}$$

attempt to find x in terms of y

(M1)

OR exchange x and y and attempt to find y in terms of x

$$3y - xy = ax + 4$$

$$ax + xy = 3y - 4$$

$$x(a+y)=3y-4$$

$$x = \frac{3y - 4}{y + a}$$

$$g^{-1}(x) = \frac{3x - 4}{x + a}$$

Note: Condone use of y =

$$g(x) \equiv g^{-1}(x)$$

$$\frac{ax+4}{3-x} \equiv \frac{3x-4}{x+a}$$

$$\Rightarrow a = -3$$

[4 marks]

METHOD 2

$$g(x) = \frac{ax+4}{3-x}$$

attempt to find an expression for g(g(x)) and equate to x (M1)

$$gg(x) = \frac{a\left(\frac{ax+4}{3-x}\right)+4}{3-\left(\frac{ax+4}{3-x}\right)} = x$$

$$\frac{a(ax+4)+4(3-x)}{(9-3x)-(ax+4)} = x$$

$$\frac{a(ax+4)+4(3-x)}{5-(3+a)x} = x$$

$$a(ax+4)+4(3-x)=x(5-(3+a)x)$$

equating coefficients of x^2 (or similar)

$$a = -3$$

[4 marks]

Total [9 marks]

3. attempt to use change the base

$$\log_3 \sqrt{x} = \frac{\log_3 2}{2} + \log_3 (4x^3)$$

attempt to use the power rule

(M1)

$$\log_3 \sqrt{x} = \log_3 \sqrt{2} + \log_3 \left(4x^3\right)$$

attempt to use product or quotient rule for logs, $\ln a + \ln b = \ln ab$

(M1)

$$\log_3 \sqrt{x} = \log_3 \left(4\sqrt{2}x^3 \right)$$

Note: The *M* marks are for attempting to use the relevant log rule and may be applied in any order and at any time during the attempt seen.

$$\sqrt{x} = 4\sqrt{2}x^3$$

$$x = 32x^6$$

$$x^5 = \frac{1}{32}$$
 (A1)

$$x = \frac{1}{2}$$

[5 marks]

A1

4. (a) valid approach to find P(R) (M1)

tree diagram (must include probability of picking box) with correct required probabilities

$$\mathsf{OR}\ \mathsf{P}\big(R \cap B_{\scriptscriptstyle 1}\big) + \mathsf{P}\big(R \cap B_{\scriptscriptstyle 2}\big)\ \mathsf{OR}\ \mathsf{P}\big(R\,|\,B_{\scriptscriptstyle 1}\big)\mathsf{P}\big(B_{\scriptscriptstyle 1}\big) + \mathsf{P}\big(R\,|\,B_{\scriptscriptstyle 2}\big)\mathsf{P}\big(B_{\scriptscriptstyle 2}\big)$$

$$\frac{5}{7} \cdot \frac{1}{2} + \frac{4}{7} \cdot \frac{1}{2}$$
 (A1)

$$P(R) = \frac{9}{14}$$

[3 marks]

(b) events A and R are not independent, since $\frac{9}{14} \cdot \frac{1}{2} \neq \frac{5}{14}$ OR $\frac{5}{7} \neq \frac{9}{14}$ OR $\frac{5}{9} \neq \frac{1}{2}$

OR an explanation e.g. different number of red balls in each box

A2

Note: Both conclusion and reasoning are required. Do not split the A2.

[2 marks]

Total [5 marks]

5. (a) f'(4) = 6

[1 mark]

(b)
$$f(4) = 6 \times 4 - 1 = 23$$

[1 mark]

(c)
$$h(4) = f(g(4))$$
 (M1)

$$h(4) = f(4^2 - 3 \times 4) = f(4)$$

$$h(4) = 23$$

[2 marks]

(d) attempt to use chain rule to find
$$h'$$
 (M1)

$$f'(g(x)) \times g'(x)$$
 OR $(x^2 - 3x)' \times f'(x^2 - 3x)$

$$h'(4) = (2 \times 4 - 3) f'(4^2 - 3 \times 4)$$

=30

$$y-23=30(x-4)$$
 OR $y=30x-97$

[3 marks]

Total [7 marks]

6. (a) **METHOD 1**

attempt to write all LHS terms over a common denominator of x-1 (M1)

$$2x-3-\frac{6}{x-1} = \frac{2x(x-1)-3(x-1)-6}{x-1} \text{ OR } \frac{(2x-3)(x-1)}{x-1} - \frac{6}{x-1}$$

$$= \frac{2x^2 - 2x - 3x + 3 - 6}{x - 1} \text{ OR } \frac{2x^2 - 5x + 3}{x - 1} - \frac{6}{x - 1}$$

$$=\frac{2x^2 - 5x - 3}{x - 1}$$

[2 marks]

METHOD 2

attempt to use algebraic division on RHS (M1)

correctly obtains quotient of 2x-3 and remainder -6

$$=2x-3-\frac{6}{x-1}$$
 as required.

[2 marks]

(b) consider the equation
$$\frac{2\sin^2 2\theta - 5\sin 2\theta - 3}{\sin 2\theta - 1} = 0$$

$$\Rightarrow 2\sin^2 2\theta - 5\sin 2\theta - 3 = 0$$
(M1)

EITHER

attempt to factorise in the form
$$(2\sin 2\theta + a)(\sin 2\theta + b)$$
 (M1)

Note: Accept any variable in place of $\sin 2\theta$.

$$(2\sin 2\theta + 1)(\sin 2\theta - 3) = 0$$

OR

attempt to substitute into quadratic formula

(M1)

$$\sin 2\theta = \frac{5 \pm \sqrt{49}}{4}$$

THEN

$$\sin 2\theta = -\frac{1}{2} \text{ or } \sin 2\theta = 3 \tag{A1}$$

Note: Award **A1** for $\sin 2\theta = -\frac{1}{2}$ only.

one of
$$\frac{7\pi}{6}$$
 OR $\frac{11\pi}{6}$ (accept 210 or 330)

$$\theta = \frac{7\pi}{12}, \frac{11\pi}{12} \text{ (must be in radians)}$$

Note: Award A0 if additional answers given.

[5 marks]

Total [7 marks]

7. (a) attempt to use discriminant
$$b^2 - 4ac(>0)$$

М1

$$(2p)^2 - 4(3p)(1-p)(>0)$$

$$p(4p-3)(>0)$$

attempt to find critical values
$$\left(p=0, \ p=\frac{3}{4}\right)$$

recognition that discriminant > 0 (M1)

$$p < 0 \text{ or } p > \frac{3}{4}$$

Note: Condone 'or' replaced with 'and', a comma, or no separator

[5 marks]

(b)
$$p = 4 \Rightarrow 12x^2 + 8x - 3 = 0$$

valid attempt to use
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (or equivalent)

$$x = \frac{-8 \pm \sqrt{208}}{24}$$

$$x = \frac{-2 \pm \sqrt{13}}{6}$$

$$a = -2$$

[2 marks]

Total [7 marks]

8.
$$\frac{dy}{dx} + \frac{2y}{x} = \frac{\ln 2x}{x^2}$$
 (M1)

– 19 –

attempt to find integrating factor (M1)

$$\left(e^{\int_{-x}^{2} dx} = e^{2\ln x}\right) = x^{2}$$
(A1)

$$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = \ln 2x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^2y) = \ln 2x$$

$$x^2 y = \int \ln 2x \, \mathrm{d}x$$

attempt to use integration by parts (M1)

$$x^2y = x\ln 2x - x(+c)$$

$$y = \frac{\ln 2x}{x} - \frac{1}{x} + \frac{c}{x^2}$$

substituting $x = \frac{1}{2}$, y = 4 into an integrated equation involving c

4 = 0 - 2 + 4c

$$\Rightarrow c = \frac{3}{2}$$

$$y = \frac{\ln 2x}{x} - \frac{1}{x} + \frac{3}{2x^2}$$

[7 marks]

(M1)

9. (a) attempt to expand binomial with negative fractional power

$$\frac{1}{\sqrt{1+ax}} = \left(1+ax\right)^{-\frac{1}{2}} = 1 - \frac{ax}{2} + \frac{3a^2x^2}{8} + \dots$$

$$\sqrt{1-x} = (1-x)^{\frac{1}{2}} = 1 - \frac{x}{2} - \frac{x^2}{8} + \dots$$

$$\frac{1}{\sqrt{1+ax}} - \sqrt{1-x} = \frac{(1-a)}{2}x + \left(\frac{3a^2+1}{8}\right)x^2 + \dots$$

attempt to equate coefficients of
$$x$$
 or x^2 (M1)

$$x: \frac{1-a}{2} = 4b; x^2: \frac{3a^2+1}{8} = b$$

$$a = -\frac{1}{3}, b = \frac{1}{6}$$

$$\begin{array}{c|c} \textbf{[6 marks]} \\ \textbf{(b)} & |x| < 1 \end{array}$$

[1 mark] Total [7 marks]

Section B

10. (a) (i) valid approach to find turning point (
$$v' = 0$$
, $-\frac{b}{2a}$, average of roots) (*M1*)

$$4-6t=0$$
 OR $-\frac{4}{2(-3)}$ OR $\frac{-\frac{2}{3}+2}{2}$

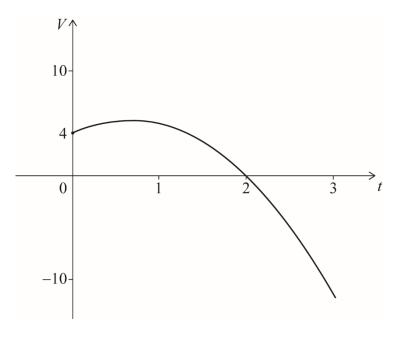
$$t = \frac{2}{3}$$
 (s)

(ii) attempt to integrate
$$v$$
 (M1)

$$\int v \, dt = \int (4 + 4t - 3t^2) \, dt = 4t + 2t^2 - t^3 (+c)$$

Note: Award **A1** for $4t + 2t^2$, **A1** for $-t^3$.

attempt to substitute their
$$t$$
 into their solution for the integral (M1)


distance =
$$4\left(\frac{2}{3}\right) + 2\left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^3$$

$$=\frac{8}{3}+\frac{8}{9}-\frac{8}{27}$$
 (or equivalent)

$$=\frac{88}{27} \text{ (m)}$$

[7 marks] continue...

(b)

valid approach to solve $4+4t-3t^2=0$ (may be seen in part (a))

$$(2-t)(2+3t)$$
 OR $\frac{-4\pm\sqrt{16+48}}{-6}$

correct x- intercept on the graph at t = 2

A1

Note: The following two **A** marks may only be awarded if the shape is a concave down parabola. These two marks are independent of each other and the **(M1)**.

correct domain from 0 to 3 starting at (0,4)

A1

Note: The 3 must be clearly indicated.

vertex in approximately correct place for $t = \frac{2}{3}$ and v > 4

A1

[4 marks]

(c) recognising to integrate between 0 and 2, or 2 and 3 OR
$$\int_{0}^{3} \left| 4 + 4t - 3t^{2} \right| dt$$
 (M1)

$$\int_{0}^{2} \left(4 + 4t - 3t^2\right) \,\mathrm{d}t$$

$$=8$$

$$\int_{2}^{3} \left(4 + 4t - 3t^2\right) dt$$

$$=-5$$

valid approach to sum the two areas (seen anywhere)

$$\int_{0}^{2} v \, dt - \int_{2}^{3} v \, dt \quad OR \quad \int_{0}^{2} v \, dt + \left| \int_{2}^{3} v \, dt \right|$$

total distance travelled
$$=13$$
 (m)

[5 marks]

Total [16 marks]

11. (a) For n = 1

LHS:
$$\frac{d}{dx}(x^2e^x) = x^2e^x + 2xe^x (= e^x(x^2 + 2x))$$

RHS:
$$(x^2 + 2(1)x + 1(1-1))e^x (= e^x (x^2 + 2x))$$

so true for n=1

now assume true for
$$n=k$$
; i.e. $\frac{\mathrm{d}^k}{\mathrm{d}x^k} \left(x^2 \mathrm{e}^x \right) = \left[x^2 + 2kx + k\left(k-1\right) \right] \mathrm{e}^x$

Note: Do not award M1 for statements such as "let n = k". Subsequent marks can still be awarded.

attempt to differentiate the RHS

$$\frac{d^{k+1}}{dx^{k+1}} \left(x^2 e^x \right) = \frac{d}{dx} \left(\left[x^2 + 2kx + k \left(k - 1 \right) \right] e^x \right)$$

$$= (2x+2k)e^{x} + (x^{2}+2kx+k(k-1))e^{x}$$

$$= [x^{2} + 2(k+1)x + k(k+1)]e^{x}$$
A1

so true for n = k implies true for n = k + 1

therefore n=1 true and n=k true $\Rightarrow n=k+1$ true

therefore, true for all $n \in \mathbb{Z}^+$

Note: Award **R1** only if three of the previous four marks have been awarded

[7 marks]

R1

(b) METHOD 1

attempt to use
$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(x^2 \mathrm{e}^x \right) = \left[x^2 + 2nx + n(n-1) \right] \mathrm{e}^x$$
 (M1)

Note: For x = 0, $\frac{d^n}{dx^n} (x^2 e^x)_{|x=0} = n(n-1)$ may be seen.

$$f(0) = 0, f'(0) = 0, f''(0) = 2, f'''(0) = 6, f^{(4)}(0) = 12$$

use of
$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{(4)}(0) + \dots$$
 (M1)

$$\Rightarrow f(x) \approx x^2 + x^3 + \frac{1}{2}x^4$$

[3 marks]

METHOD 2

$$x^2 \times \text{Maclaurin series of } e^x$$
 (M1)

$$x^2 \left(1 + x + \frac{x^2}{2!} + \dots \right)$$
 (A1)

$$\Rightarrow f(x) \approx x^2 + x^3 + \frac{1}{2}x^4$$

[3 marks]

(c) METHOD 1

attempt to substitute
$$x^2 e^x \approx x^2 + x^3 + \frac{1}{2}x^4$$
 into $\frac{\left(x^2 e^x - x^2\right)^3}{x^9}$

$$\frac{\left(x^2 e^x - x^2\right)^3}{x^9} \approx \frac{\left(x^2 + x^3 + \frac{1}{2}x^4(+\dots) - x^2\right)^3}{x^9}$$
(A1)

EITHER

$$= \frac{\left(x^3 + \frac{1}{2}x^4 + \dots\right)^3}{x^9}$$

$$= \frac{x^9 \left(+\text{higher order terms}\right)}{x^9}$$

OR

$$\left(\frac{x^3 + \frac{1}{2}x^4(+...)}{x^3}\right)^3$$

$$\left(1 + \frac{1}{2}x(+...)\right)^3$$

THEN

=1 (+ higher order terms)

So
$$\lim_{x \to 0} \left[\frac{\left(x^2 e^x - x^2 \right)^3}{x^9} \right] = 1$$

[4 marks]

METHOD 2

$$\lim_{x \to 0} \left[\frac{\left(x^2 e^x - x^2 \right)^3}{x^9} \right] = \lim_{x \to 0} \left(\frac{x^2 e^x - x^2}{x^3} \right)^3$$
 M1

$$=\lim_{x\to 0}\left(\frac{\mathrm{e}^x-1}{x}\right)^3\tag{A1}$$

attempt to use L'Hôpital's rule M1

$$=\lim_{x\to 0}\left(\frac{\mathrm{e}^x-0}{1}\right)^3$$

$$= \left[\lim_{x\to 0} e^x\right]^3$$

=1 **A1**

[4 marks]

Total [14 marks]

12. (a) (i)
$$\left(1 + e^{i\frac{\pi}{6}} - 1\right)^3$$

$$=\left(e^{i\frac{\pi}{6}}\right)^3$$

- 28 -

$$=e^{i\frac{\pi}{2}}$$

$$=\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$$

$$=$$
i

Note: Candidates who solve the equation correctly can be awarded the above two marks. The working for part (i) may be seen in part (ii).

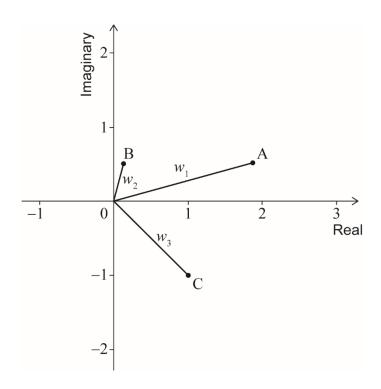
(ii)
$$(z-1)^3 = e^{i(\frac{\pi}{2} + 2\pi k)}$$
 (M1)

$$z-1=e^{i\left(\frac{\pi}{6}+\frac{4\pi k}{6}\right)}$$
 (M1)

$$(k=1) \Rightarrow \omega_2 = 1 + e^{\frac{5\pi}{6}}$$

$$(k=2) \Rightarrow \omega_3 = 1 + e^{i\frac{9\pi}{6}}$$

[6 marks]


(b) **EITHER**

attempt to express $e^{i\frac{\pi}{6}}$, $e^{i\frac{5\pi}{6}}$, $e^{i\frac{9\pi}{6}}$ in Cartesian form and translate 1 unit in the positive direction of the real axis

OR

attempt to express w_1, w_2 and w_3 in Cartesian form (M1)

THEN

Note: To award ${\bf A}$ marks, it is not necessary to see A,B or C, the w_i , or the solid lines

A1A1A1

[4 marks]

(c) valid attempt to find $\omega_1 - \omega_3$ (or $\omega_3 - \omega_1$)

М1

$$\omega_1 - \omega_3 = \left(1 + \frac{\sqrt{3}}{2} + \frac{1}{2}i\right) - \left(1 - i\right) = \frac{\sqrt{3}}{2} + \frac{3}{2}i \text{ OR } \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} + i\sin\frac{\pi}{2}$$

valid attempt to find $\left| \frac{\sqrt{3}}{2} + \frac{3}{2}i \right|$

М1

$$=\sqrt{\frac{3}{4}+\frac{9}{4}}$$

 $AC = \sqrt{3}$

A1

[3 marks]

(d) METHOD 1

$$(z-1)^3 = iz^3 \Rightarrow \left(\frac{z-1}{z}\right)^3 = i$$

$$\left(\frac{z-1}{z}\right)^3 = e^{i\frac{\pi}{2}}$$

$$\frac{\alpha - 1}{\alpha} = e^{i\frac{\pi}{6}}$$

Note: This step to change from z to α may occur at any point in MS.

$$\alpha - 1 = \alpha e^{i\frac{\pi}{6}}$$

$$\alpha - \alpha e^{i\frac{\pi}{6}} = 1$$

$$\alpha \left(1 - e^{i\frac{\pi}{6}}\right) = 1$$

$$\alpha = \frac{1}{1 - e^{\frac{i^{\frac{\pi}{6}}}{6}}}$$

METHOD 2

$$(z-1)^3 = iz^3 \Longrightarrow \left(\frac{z-1}{z}\right)^3 = i$$

$$\left(1 - \frac{1}{z}\right)^3 = e^{i\frac{\pi}{2}}$$

$$1 - \frac{1}{z} = e^{i\frac{\pi}{6}}$$

Note: This step to change from z to α may occur at any point in MS.

$$1 - e^{i\frac{\pi}{6}} = \frac{1}{\alpha}$$

$$\alpha = \frac{1}{1 - e^{i\frac{\pi}{6}}}$$

METHOD 3

LHS=
$$(z-1)^3 = \left(\frac{1}{1-e^{\frac{i^{\frac{\pi}{6}}}{6}}}-1\right)^3$$

$$= \left(\frac{e^{i\frac{\pi}{6}}}{1 - e^{i\frac{\pi}{6}}}\right)^3$$

$$= \frac{i}{\left(1 - e^{i\frac{\pi}{6}}\right)^3} \left(= \frac{i}{\frac{5}{2} - \frac{3\sqrt{3}}{2} + i\left(\frac{3\sqrt{3}}{2} - \frac{5}{2}\right)} \right)$$

M1A1

Note: Award *M1* for applying de Moivre's theorem (may be seen in modulus- argument form.)

RHS=
$$iz^3 = i \left(\frac{1}{1 - e^{i\frac{\pi}{6}}} \right)^3$$

$$=\frac{i}{\left(1-e^{i\frac{\pi}{6}}\right)^3}$$

$$(z-1)^3 = iz^3$$

METHOD 4

$$(z-1)^3 = iz^3$$

$$z^3 - 3z^2 + 3z - 1 = iz^3$$

$$(1-i)z^3 - 3z^2 + 3z - 1 = 0$$
(M1)

$$(1-i)\left(\frac{1}{1-e^{\frac{i\frac{\pi}{6}}}}\right)^3 - 3\left(\frac{1}{1-e^{\frac{i\frac{\pi}{6}}}}\right)^2 + 3\left(\frac{1}{1-e^{\frac{i\frac{\pi}{6}}}}\right) - 1$$

$$= (1-i) - 3\left(1 - e^{i\frac{\pi}{6}}\right) + 3\left(1 - e^{i\frac{\pi}{6}}\right)^2 - \left(1 - e^{i\frac{\pi}{6}}\right)^3$$
 (A1)

$$= (1-i) - 3\left(1 - e^{i\frac{\pi}{6}}\right) + 3\left(1 - 2e^{i\frac{\pi}{6}} + e^{i\frac{\pi}{3}}\right) - \left(1 - 3e^{i\frac{\pi}{6}} + 3e^{i\frac{\pi}{3}} - e^{i\frac{\pi}{2}}\right)$$
A1

$$=0$$
 AG

Note: If the candidate does not interpret their conclusion, award *(M1)(A1)A0* as appropriate.

[3 marks] continue...

(e) METHOD 1

$$\frac{1}{1 - e^{\frac{i\pi}{6}}} = \frac{1}{1 - \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)}$$
 M1

$$=\frac{2}{2-\sqrt{3}-i}$$

attempt to use conjugate to rationalise M1

$$=\frac{4-2\sqrt{3}+2i}{\left(2-\sqrt{3}\right)^2+1}$$

$$=\frac{4-2\sqrt{3}+2i}{8-4\sqrt{3}}$$

$$= \frac{1}{2} + \frac{1}{4 - 2\sqrt{3}}i$$

$$\Rightarrow \operatorname{Re}(\alpha) = \frac{1}{2}$$

Note: Their final imaginary part does not have to be correct in order for the final three **A** marks to be awarded

[6 marks] continue...

M1

Question 12 continued.

METHOD 2

$$\frac{1}{1 - e^{i\frac{\pi}{6}}} = \frac{1}{1 - \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)}$$
 M1

attempt to use conjugate to rationalise

$$= \frac{1}{\left(1 - \cos\frac{\pi}{6}\right) - i\sin\frac{\pi}{6}} \times \frac{\left(1 - \cos\frac{\pi}{6}\right) + i\sin\frac{\pi}{6}}{\left(1 - \cos\frac{\pi}{6}\right) + i\sin\frac{\pi}{6}}$$

$$A1$$

$$= \frac{\left(1 - \cos\frac{\pi}{6}\right) + i\sin\frac{\pi}{6}}{\left(1 - \cos\frac{\pi}{6}\right)^2 + \sin^2\frac{\pi}{6}}$$
A1

$$= \frac{\left(1 - \cos\frac{\pi}{6}\right) + i\sin\frac{\pi}{6}}{1 - 2\cos\frac{\pi}{6} + \cos^2\frac{\pi}{6} + \sin^2\frac{\pi}{6}}$$

$$=\frac{\left(1-\cos\frac{\pi}{6}\right)+i\sin\frac{\pi}{6}}{2-2\cos\frac{\pi}{6}}$$

$$=\frac{1}{2} + \frac{i\sin\frac{\pi}{6}}{2 - 2\cos\frac{\pi}{6}}$$

$$\Rightarrow \operatorname{Re}(\alpha) = \frac{1}{2}$$

Note: Their final imaginary part does not have to be correct in order for the final three **A** marks to be awarded

[6 marks]

METHOD 3

$$\frac{1}{1 - e^{\frac{i\pi}{6}}} = -\frac{e^{-i\frac{\pi}{12}}}{e^{\frac{i\pi}{12}} - e^{-i\frac{\pi}{12}}}$$
A1

attempting to re-write in r-cis form M1

$$= -\frac{\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)}{\cos\frac{\pi}{12} + i\sin\frac{\pi}{12} - \left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right)}$$
A1

$$=-\frac{\cos\frac{\pi}{12}-i\sin\frac{\pi}{12}}{2i\sin\frac{\pi}{12}}$$

$$= \frac{1}{2} - \frac{1}{2i}\cot\frac{\pi}{12} \left(= \frac{1}{2} + \frac{1}{2}i\cot\frac{\pi}{12} \right)$$

$$\Rightarrow \operatorname{Re}(\alpha) = \frac{1}{2}$$

[6 marks]

METHOD 4

attempt to multiply through by
$$\frac{1-e^{-i\frac{\pi}{6}}}{1-e^{-i\frac{\pi}{6}}}$$

$$\frac{1}{1 - e^{\frac{i\pi}{6}}} = \frac{1 - e^{-i\frac{\pi}{6}}}{1 - e^{-i\frac{\pi}{6}} - e^{\frac{i\pi}{6}} + 1}$$
A1

attempting to re-write in r-cis form M1

$$=\frac{1-\cos\frac{\pi}{6}-i\sin\frac{\pi}{6}}{2-2\cos\frac{\pi}{6}}$$

$$A1$$

attempt to re-write in Cartesian form M1

$$= \frac{1 - \frac{\sqrt{3}}{2} - \frac{1}{2}i}{2 - \sqrt{3}} \left(= \frac{\frac{2 - \sqrt{3}}{2}}{2 - \sqrt{3}} + i\frac{\frac{1}{2}}{2 - \sqrt{3}} \right)$$

$$\Rightarrow \operatorname{Re}(\alpha) = \frac{1}{2}$$

Note: Their final imaginary part does not have to be correct in order for the final **A** mark to be awarded

[6 marks]

Total [22 marks]